High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables
نویسندگان
چکیده
This paper presents a general methodology for high-dimensional pattern regression on medical images via machine learning techniques. Compared with pattern classification studies, pattern regression considers the problem of estimating continuous rather than categorical variables, and can be more challenging. It is also clinically important, since it can be used to estimate disease stage and predict clinical progression from images. In this work, adaptive regional feature extraction approach is used along with other common feature extraction methods, and feature selection technique is adopted to produce a small number of discriminative features for optimal regression performance. Then the Relevance Vector Machine (RVM) is used to build regression models based on selected features. To get stable regression models from limited training samples, a bagging framework is adopted to build ensemble basis regressors derived from multiple bootstrap training samples, and thus to alleviate the effects of outliers as well as facilitate the optimal model parameter selection. Finally, this regression scheme is tested on simulated data and real data via cross-validation. Experimental results demonstrate that this regression scheme achieves higher estimation accuracy and better generalizing ability than Support Vector Regression (SVR).
منابع مشابه
Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملPattern recognition and machine learning for magnetic resonance images with kernel methods
The aim of this thesis is to apply a particular category of machine learning and pattern recognition algorithms, namely the kernel methods, to both functional and anatomical magnetic resonance images (MRI). This work specifically focused on supervised learning methods. Both methodological and practical aspects are described in this thesis. Kernel methods have the computational advantage for hig...
متن کاملHigh-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans
MOTIVATION With complex traits and diseases having potential genetic contributions of thousands of genetic factors, and with current genotyping arrays consisting of millions of single nucleotide polymorphisms (SNPs), powerful high-dimensional statistical techniques are needed to comprehensively model the genetic variance. Machine learning techniques have many advantages including lack of parame...
متن کاملErratum to multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease [Neuroimage 59/2 (2012) 895-907]
Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existi...
متن کاملIterative sliced inverse regression for segmentation of ultrasound and MR images
In this study, we propose an integrated approach based on iterative sliced inverse regression (ISIR) for the segmentation of ultrasound and magnetic resonance (MR) images. The approach integrates two stages. The first is the unsupervised clustering which combines multidimensional scaling (MDS) with K-Means. The dimension reduction based on MDS is employed to obtain fewer representative variates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2010